	AEROSPACE MATERIAL SPECIFICATION	AMS5688™	REV. M
NAL®		Issued1939-12Reaffirmed2012-10Revised2019-01Superseding AMS5688L	
	Steel, Corrosion Resistant, Wire 18Cr - 9.0Ni (302) Spring Temper (Composition similar to UNS S30200)		

RATIONALE

AMS5688M introduces exceptions (3.6), revises chemical analysis standards (3.1), reports (4.4), and identification (5.1.1), and results from a Five-Year Review and update of this specification.

1. SCOPE

1.1 Form

This specification covers a corrosion resistant steel in the form of wire.

1.2 Application

This wire has been used typically for springs requiring corrosion and heat resistance up to 500 °F (260 °C), but usage is not limited to such applications.

2. APPLICABLE DOCUMENTS

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2019 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER:

Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-4970 (outside USA) Fax: 724-776-0790 Email: CustomerService@sae.org http://www.sae.org SAE values your input. To provide feedback on this Technical Report, please visit http://standards.sae.org/AMS5688M

<u>SAE INTERNATIONAL</u>

AMS5688™M

2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), <u>www.sae.org</u>.

- AMS2241 Tolerances, Corrosion and Heat-Resistant Steel, Iron Alloy, Titanium, and Titanium Alloy Bars and Wire
- AMS2248 Chemical Check Analysis Limits, Corrosion and Heat-Resistant Steels and Alloys, Maraging and Other Highly-Alloyed Steels, and Iron Alloys
- AMS2371 Quality Assurance Sampling and Testing, Corrosion and Heat-Resistant Steels and Alloys, Wrought Products and Forging Stock
- ARP1917 Clarification of Terms Used in Aerospace Metals Specifications
- 2.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, <u>www.astm.org</u>.

- ASTM E8/E8M Tension Testing of Metallic Materials
- ASTM A751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products
- 3. TECHNICAL REQUIREMENTS
- 3.1 Composition

Shall conform to the percentages by weight shown in Table 1, determined in accordance with ASTM A751, by spectrochemical methods, or by other analytical methods acceptable to purchaser.

Element	Min	Max
Carbon		0.15
Manganese		2.00
Silicon		1.00
Phosphorus		0.040
Sulfur		0.030
Chromium	17.00	19.00
Nickel	8.00	10.00
Molybdenum		0.75
Copper		0.75

Table 1 - Composition

3.1.1 Check Analysis

Composition variations shall meet the applicable requirements of AMS2248.

3.2 Condition

Spring temper, cold drawn or rolled to required size.

- 3.2.1 Wire shall be supplied in coils or as ordered.
- 3.3 Properties

Wire shall conform to the following requirements:

SAE INTERNATIONAL

AMS5688™M

3.3.1 Tensile Strength

Round wire, square wire, and rectangular wire having nominal width not greater than four times the nominal thickness shall have tensile strength as shown in Table 2, determined in accordance with ASTM E8/E8M.

Table 2A - Tensile properties, inch/pound units

Nominal Diameter	Tensile Strength	Tensile Strength	
or Thickness	ksi	ksi	
Inch	Round	Square and Rectangular	
Up to 0.009, incl	325 - 355	295 - 325	
0.010	320 - 350	290 - 320	
0.011	318 - 348	288 - 318	
0.012	316 - 346	286 - 316	
0.013	314 - 344	284 - 314	
0.014	312 - 342	282 - 312	
0.015	310 - 340	280 - 310	
0.016	308 - 338	278 - 308	
0.017	306 - 336	276 - 306	
0.018	304 - 334	274 - 304	
0.020	300 - 330	270 - 300	
0.020	296 - 326	266 - 296	
0.022	290 - 320	260 - 290	
0.024	292 - 322	262 - 252	
0.020	280 - 318	250 - 280	
0.020	285 - 315	255 - 285	
0.034	282 - 310	255 - 265	
0.037	280 308	252 - 262	
0.037	275 304	230 - 200	
0.041	273 - 304	243 - 273	
0.040	267 205	242 - 212	
0.050	207 - 295	237 - 207	
0.054	203 - 293	233 - 203	
0.050	201 - 209	201 - 201	
0.003	250 - 265	220 - 250	
0.075	252 - 261	222 - 252	
0.075	246 275	216 246	
0.080	240 - 273	210 - 240 212 - 242	
0.007	238 - 268	212 - 242 208 - 238	
0.095	232 - 262	200 - 200	
0.105	202 - 202	197 - 202	
0.115	227 - 257	107 - 227	
0.125	217 - 248	187 - 217	
0.135	217 - 240	180 - 210	
0.140	205 - 235	175 - 205	
0.102	108 - 228	168 - 108	
0.177	190 - 220	164 - 194	
0.192	188 - 220	158 - 188	
0.207	182 214	152 182	
0.220	175 205	1/5 175	
0.230	169 109	139 169	
0.270	161 102	131 161	
0.300	101 - 192	125 155	
0.331	150 1901	120 - 100	
0.302	145 1721	110 - 140	
0.394	140 - 1701	112 - 142	
0.430	125 1651		
0.500			
Over 0.500	130 - 160'		

¹These properties have not been verified in accordance with AMS statistical procedures.